

0040-4039(95)02396-8

Synthesis and Hybridization Properties of an Oligonucleotide Analog Containing a Glucose-derived Conformation-restricted Ribose Moiety and 2', 5' Formacetal Linkages

Ruiming Zou and Mark D. Matteucci*

Gilead Sciences, Inc., 353 Lakeside Drive, Foster City, CA, 94404, U.S.A.

Abstract: A pyrimidine trinucleoside containing a conformationally restricted ribose moiety and two 2', 5' formacetal internucleoside linkages was synthesized. The bicyclic ribose moiety was identified by molecular modeling as a candidate to preorder a nucleoside to resemble the bound duplex conformation. The thymine nucleoside analog was simply synthesized from glucose. The trimer was incorporated at the 3' end of a larger unmodified ON. The hybridization affinity of this chimeric ON analog to a complementary RNA was found to be somewhat inferior relative to a non conformationally restricted control.

Covalent conformational restriction of unbound ligands to resemble their bound state is a proven method for the enhancement of ligand-receptor interactions.¹ This concept is now beginning to be applied toward the enhanced recognition of nucleic acid receptors such as complementary RNA and DNA by oligonucleotides (ONs) ligands.² We have previously reported the synthesis and binding properties of ON analogs containing 3', 5' formacetal³ and 2', 5' formacetal internucleoside⁴ linkages. These modifications replace the phosphodiester with a small, non-ionic and non-chiral linkage and confer to the ON analogs comparable binding affinity for ssRNA. In an effort to improve the binding affinity of 2', 5' formacetal ON analogs, a conformation-restricted furanose moiety was simply synthesized in order to pre-ordered the ribose conformation. The common sugar, glucose, was converted into a 5,5 bicyclic ring system which locks the ribose torsion angles of the nucleoside into a conformation resembling the bound form of canonical A form duplex.⁵ We report the synthesis of the trinucleoside analog (2) (Scheme 1) bearing a 3', 6'-anhydro-glucose derivative, its incorporation into a longer ON, and the hybridization property of the ON analog with a complementary ssRNA sequence.

The synthesis of the trinucleoside $\mathbf{2}$ is outlined in Scheme 1. Treatment of 1, 2-O-isopropylidene- α -D-glucofuranose ($\mathbf{1}$) with PhC(OMe)₃/TsOH resulted in the formation of a glucose ortho ester intermediate, which underwent concomitant acid-catalyzed rearrangement to give the 3, 6-anhydroglucose derivative ($\mathbf{2}$) in 98% yield.⁶ Acetolysis of $\mathbf{2}$ followed by glycosylation with silylated thymine in the presence of trimethylsilyltriflate (TMSOTf) furnished the desired nucleoside $\mathbf{3}$. Selective removal of the 2'-O-acetyl protecting group of $\mathbf{3}$ was achieved with NaOMe/THF and subsequent treatment with Me₂S/Bz₂O₂ afforded the methylthiomethyl ether $\mathbf{4}$.⁷ The 5'-O-benzoyl group of $\mathbf{4}$ was removed and replaced by a phenoxyacetyl (Pac) group to enable its facile, mildly basic, selective removal during the chain elongation process. The 2'-O-methylthiomethyl group $\mathbf{5}$ was then converted to the 2'-O-methyl diphenylphosphinate ($\mathbf{5}$).^{7,8} Condensation of $\mathbf{5}$ with 2'-deoxy-N⁴-benzoyl-3'-O-t-butyldiphenylsilyl-5-methylcytidine ($\mathbf{6}$)¹⁰ followed by

A: Pb(COMe)₃, TsOH, CH₂Cl₂, RT; B: AcOH, Ac₂O, H₂SO₄, RT; C: thymine, BSA, MeCN, TMSOTf, 70° C; D: NaOMe, THF, RT; E: Me₂S, Bz₂O₂, MeCN, 0° C; F: NaOMe, MeOH, RT; G: PacCl, Pyr, CH₂Cl₂, RT; H: NIS, Ph₂PO₂H, DCE, RT; I: TMSOTf, MeCN, DCE, -40° C; J: NH₃/MeOH, 0° C; K: DMTCl, Pyr, CH₂Cl₂, RT: L: TBAF, THF, RT; M: succinic anhydride, Et₃N, DMAP, DCE; N: TEAB; O: Pyr, DMF, diisopropylcarbodiimide

selective deprotection of the 5'-O-Pac group with NH₃/MeOH provided the dinucleoside 7. Further chain elongation with the diphenylphosphinate 8,11 replacement of the 5'-O-Pac with a dimethoxytrityl (DMT) group, and desilylation at the 3' end gave the target trinucleoside 2. The trinucleoside 2 was functionalized at the 3' end as a succinate and then coupled onto the controlled pore glass (CPG, amino form). This CPG was used for the solid phase ON synthesis using the H-phosphonate method. 12

The trinucleoside $\mathbf{2}$ was incorporated into an ON of the sequence 5'-CMTTCMATTITT $\mathbf{\hat{q}}T^{c}M^{c}$ -3', where $\mathbf{C}^{M} = 5$ -methyl-2'-deoxycytidine and $\mathbf{T}^{c}\mathbf{q}T^{c}M^{c}$ is $\mathbf{2}$, the modified trinucleoside bearing two 2', 5' formacetal linkages and a conformation-restricted glucose monomer. The ONs of the same sequence, 5'-CMTTCMATTITT^TCM-3' (where T^TCM is the non-conformationally restricted 2', 5' formacetal-linked trimer and all other linkages are 3',5' phosphodiester) and 5'-CMTTCMATTITTTCM-3' (all linkages are 3',5' phosphodiester) were also synthesized as controls in the hybridzation experiments. The formation of the duplex between these ON analogs and the complementary ssRNA target (5'-GAAGAAAAAUGAAGAAAAU-3') was studied by thermal denaturation experiments using intracellular salt conditions. ¹³

The T_m results are listed in Table 1. The T_m of the ON bearing two 2', 5' formacetal linkages was 2.5°C lower (-1.25°C/substitution) than that of the corresponding 3', 5' phosphate. This result was consistent with the previous observation from another 2', 5' formacetal ON (-0.5°C/substitution)⁴. Further modification by restriction of the sugar conformation with a 3', 6'-anhydroglucose moiety resulted in a destabilization (-0.75°C/substitution) of the duplex with the target ssRNA compared to the 2', 5' formacetal control.

ONs have potential application as antisense inhibitors.¹⁴ Formacetal linkages are of interest due to their lack of sensitivity to nucleases and their potential of favorable cellular permeation properties.^{3c} This particular attempt at covalent conformational restriction of the ribose moiety in conjunction with a 2',5' formacetal linkage has resulted in somewhat poorer binding affinity. A 5,5 bicyclic ring system is very rigid and causes a clear distortion of the sugar pucker geometries of the parent ribose ring.^{2a,2b} The hybridization properties of these ONs may be improved if the extreme rigidity of the 5,5 ring system is relaxed by creating a larger ring fused to the ribose. Work on the synthesis of 2', 5' formacetal ONs bearing such conformation-restricted sugar moieties is currently in progress.

Table 1. Tm Results

ON	Modification	T _m °C
5'-C ^M TTC ^M ATTTTTTC ^M -3'	3', 5' Phosphate	41.0_
5'-CMTTCMATTTTTTCM-3'	3'-Deoxyribo-2', 5' formacetal	38.5
5'-CMTTCMATTTTT*gT*CM-3'	3', 6'-Anhydrogluco-2', 5' formacetal	37.0

Acknowledgments: We thank Terry Terhorst for the solid phase ON synthesis, Theresa Huang for T_m measurements and Mary Hogsett for manuscript preparation.

REFERENCES AND NOTES:

- 1. a) Cram, D.J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
 - b) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988 27, 89.
 - c) Hirschmann, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1278.
- 2. a) Tarkov, M.; Bolli, M.; Schweizer, B.; Leumann, C. Helv. Chim. Acta 1993, 76, 481.
 - b) Jones, R.J.; Swaminathan, S.; Milligan; J.F.; Wadwani, S.; Froehler, B.C.; Matteucci, M.D. J. Am. Chem. Soc. 1993, 115, 9816.
 - c) Tarkov, M.; Bolli, M.; Leumann, C. Helv. Chim. Acta 1994, 77, 716.
- 3 a) Matteucci, M.D. Tetrahedron Lett. 1990, 31, 2385.
 - b) Veeneman, G.H.; van der Marel, G.A..; van den Elst, H.; van Boom, J.H. Tetrahedron 1991, 47, 1547.
 - c) Jones, R.J.; Lin, K.-Y.; Milligan, J.F.; Wadwani, S.; Matteucci, M.D., J. Org. Chem. 1993, 58, 2983.
- 4 Pudlo, J.S.; Cao, X.; Swaminathan, S.; Matteucci, M.D. Tetrahedron Lett. 1994, 35, 9315.
- 5. Modeling studies performed using Biograf software from Molecular Simulations Inc. The principle conformational restriction within this analog is the freezing of rotation about the C5'-O5' bond thereby fixing a gauche relationship between the O4' and O5'. The ribose ring pucker is likely locked in a 3' endo (A helix like) conformation by the 2' oxygen substituent.
- 6. Compound **2** had been prepared previously from 1, 2, 5, 6-diisopropylidene-D-glucose via a four-step synthesis (Ernie Prisbe, personal communication).
- 7. Quaedflieg, P.J.L.M.; Timmers, C.M.; van der Marel, G.A.; Kuyl-Yeheskiely, E.; van Boom, J.H. Synthesis 1993, 627.
- 8. The dibutyl phosphate acetals⁷ have been found to be unstable; a stable variant is the diphenylphosphinate.⁹
- 9. Zhang, L.; Matteucci, M.D. Tetrahedron Lett., submitted.
- 10. Divaker, K.L.; Reese, C.B. J. Chem. Soc. Perkin Trans. 1982 1, 1171.
- The diphenylphosphinate 8 was prepared from 1-(2-O-methylthiomethyl-5-O-toluoyl-3-deoxy-β-D-ribofuranosyl)thymine by the replacement of the 5'-O-toluoyl with a phenoxyacetyl group and subsequent treatment with PhoPOOH/NIS.9
- 12. Froehler, B.C.; Ng, P.G.; Matteucci, M.D. Nucl. Acids Res. 1986, 14, 5399.
- 13. The concentration of all ONs was 2.8 μM, and the following buffer was used: 140 mM KCl, 5mM Na₂HPO₄ (10 mM Na+), 1 mM MgCl₂ and pH 7.2. These salt conditions were chosen to approximate the intracellular cationic environment. See: Alberts, B.; et al. *Molecular Biology of the Cell*; Garland: New York, 1989: p. 301.
- 14. a) Uhlmann, E.; Peymen, A. Chem. Rev. 1990, 90, 543.
 - b) Milligan, J.F.; Matteucci, M.D.; Martin, J.C. J. Med. Chem. 1993, 36, 1923.

(Received in USA 16 October 1995; accepted 1 December 1995)